Skip to main content

Behind the scenes: what doctors do in the hospital apart from medical practice

In Korea, the road to becoming a doctor with a specialty normally takes eleven years. It consists of six years of education in a medical college and one year of internship in a training hospital, usually one of the university hospitals, followed by four years of training in a specific medical specialty, such as internal medicine. If a doctor with a specialty decides to remain in the university hospital, they will move up the hospital ladder in phases over a few decades according to the following stages: fellow, assistant professor, associated professor, and (full) professor.

Perhaps the lives of medical students and medical interns are not far away from what the general population can imagine. However, residents and fellows' lives are quite different according to their respective specialty, so residents and fellows from each department don't know clearly what their friends do in other departments.


However, there is one thing that almost every resident and fellow does regardless of their specialty, data cleaning, also called data cleansing. As writing journal articles is a common requirement, residents and fellows have to extract information from EMR (Electronic Medical Record), de-identify, clean, and analyze the data.

The final goal of the research is to obtain useful knowledge that can make a change, for example, the improvement in treatment strategies or accuracy of diagnostic tools. In that sense, it should be fulfilling to gather, preprocess, and analyze the data. I'm a fellow in a university hospital. In reality, when I'm talking to a doctor friend, we are likely to mock one another over the never-ending overtime while dreaming of transforming dirty data into analyzable data. In other words, when we are preparing for a medical research article, we normally spend most of the time copying and pasting records, filling missing values, correcting typos, fixing errors in data files. No matter what the final results are, whether it is being published in a great journal or not, we feel overwhelmed and frustrated, collecting and cleaning the dataset of several thousand cases. We understand it is a necessary job, but it feels like a chore.


Why is collecting and cleaning medical data a bothersome and physically demanding chore?

First, medical records are mostly unstructured data by nature. Clinical notes, surgical records, discharge records, radiology reports, and pathology reports contain narrative data. They lack a common structural framework, and the doctor's writing style and practice style also affect the data. Sometimes data attributes may be lost due to an EMR system failure. These features increase the complexity of data preprocessing.


Second, people in charge often have an incomplete understanding of directional and purposeful data aggregation. From my experience, data collection is mainly carried out by a professor's research assistant, and a fellow or resident receives the data and completes preprocessing before analysis. However, many of them, including me, didn't know how to clean or work with the data. Assistants are often graduates who don't necessarily have a degree in something related to medicine or statistics, and doctors often don't have the required knowledge and data handling skills for particular software environments. As a result, the whole process is inefficient.

Third, everybody's business is nobody's business. Sometimes people who don't have an interest in the task take turns collecting data from EMR. For example, a few residents may work for a professor for free (none of them is the author of the article), and they lack the motivation to complete the task thoroughly. I haven't been in such a situation, but I saw many doctor friends complaining about it. In this situation, a lot of human errors are bound to happen, which undermines the integrity of data.

As I'm a fellow, I can't help but give deeper thought to this ongoing battle with messy data. I believe we will be able to save time in collecting and cleaning data if my hospital offers practical educational sessions to improve data handling skills, such as a hands-on session. (I remember many educational sessions that ended with abstract ideas and motivational speeches.) Also, every contributor to a research project should be rewarded accordingly to keep them motivated and reduce manual errors.



professor / prə-ˈfe-sər
process / ˈprä-ˌses, ˈprō-, -səs
aggregate / ˈa-gri-gət / 어그리게이션 아니고 애그리것
project / ˈprä-ˌjekt, -jikt also ˈprō-
cleanse / ˈklenz

Comments

Popular posts from this blog

잘못 발음하기 쉬운 의학 용어 영어 단어 모음 (계속 업데이트)

의학 용어 영단어들은 대개 다 영어라서 한글로 바꾸기도 어렵고, 우리말로 바꿔놓은 텍스트를 읽노라면 원서를 읽는 것보다 머리가 더 지끈거릴 때도 있다. 하지만 원서는 그저 눈으로 읽을 뿐이다. 결국 발음은 제각각 다들 개성넘치게 하고 수업시간에도 웬만해서는 제대로 된 발음을 배울 수가 없다. 그렇게 의대 본과 4년, 인턴과 레지던트 5년 합쳐 9년 동안 굳어진 잘못된 발음을 이후에도 계속 쓰는게 일반적이다. 이왕 하는 영어 공부 내 전공에도 접목시켜보자. 매번 마음속으로 갸우뚱하며 자신없이 발음했던 의학 용어들을 머릿속에 떠오르는 대로 검색해 목록을 만들었다. 앞으로 발음이 헷갈리는 다른 의학 용어가 생길 때마다 바로 사전을 찾아보든지 유튜브를 찾아보고 정리해놓을 예정이다. 작심삼일이 되지 않기를 바랄 뿐이다. (마지막 업데이트 2020. 5. 27.) 단어 / Pronunciation symbols (Merriam-Webster dictionary) Anatomy-related pulmonary /  ˈpu̇l-mə-ˌner-ē / ㅓ와ㅜ의 중간느낌? 퍼ㅜㄹ머네리 *Cambridge [ˈpʊl.mə.ner.i], Oxford [|pʌlməneri], Collins  [pʌlməneri] mediastinum / mē-dē-ə-ˈstī-nəm / 메디아스티넘 아니고 미디어스타이넘 endocrine / ˈen-də-krən  , -ˌkrīn, -ˌkrēn / 엔도크라인 아니고 엔도크런, 엔도크린 aorta /  ā-ˈȯr-tə / 아올타 아니고 에이올더 atrium / ˈā-trē-əm / 아트리움 아니고 에이트리엄 myocardium / mī-ə-ˈkär-dē-əm / 마이오카ㄹ디엄 branchial / ˈbraŋ-kē-əl / 브랜키-얼 bronchial / ˈbräŋ-kē-əl / 브란키-얼 bronchiole / ˈbräŋ-kē-ˌōl / 브란키-오울 azygos / (ˌ)ā...

Drinking culture in Korea: Honsul (drinking alone) / 한국의 음주 문화: 혼술

Honsul (혼술, drinking alone) is a combination of two words, honja (혼자, alone) and sul-masigi (술 마시기, drinking). It has become a trendy and widely used word to describe how people have been drifting away from drinking with company since the 2010s. This trend is generally thought of as driven by the growing number of people in their 20s and 30s who are living alone. '혼술'은 '혼자'와 '술 마시기'의 합성어입니다. 이 단어는 사람들이 무리지어 음주를 하는 것을 기피하는 현상을 나타내는 단어로 2010년대 이후 유행하여 널리 쓰이게 되었습니다. 혼자 사는 20대, 30대 인구가 늘어나면서 이들이 이러한 문화를 주도하는 것으로 알려져 있습니다. Honsul at home (only two days ago) Honsul as a counter-reaction to hoe-sik 혼술, 회식 문화에 대한 반작용 Drinking alone never used to be common in Korea. Many people who were born in the 1960s and 70s are heavily group oriented. They highly value group activities and like to do everything "together." Members of their groups aren't allowed to say "no" to group activities. As they are now in key positions of companies, the...

잘못 알고 틀리게 발음하던 영어 단어 정리 (계속 업데이트)

나는 원어민처럼 부드럽게 굴러가는 발음은 바라지도 않는다. 그런데 가끔 눈으로 보고 읽는 영단어 조차도 발음하는 법을 모르거나, 자신있게 틀린 발음으로 말한뒤 뒤늦게 그것이 백번 양보해도 근본없는 엉터리 영어 발음이었다는걸 알게 되면 굉장히 부끄럽고 난감하다. 안다고 생각했던 단어조차 실제 발음이 내 생각과 전혀 달라서 깜짝 놀라기도 한다. 발음을 들어보지 않고 눈으로만 단어를 외우면 이렇게 된다. (아마 많은 한국인들이 나와 같은 실수를 매일 반복하고 있을 것이다.) 이제는 영단어를 찾아볼 때 발음을 꼭 들어보고 영어 발음 기호에도 관심을 기울이고 정리해두려고 한다. 이미 American English 발음에 익숙해져 있으므로 대중적인 Merriam-Webster 영영사전으로 찾아보기로 했다. 그런데Merriam-Webster에서는 내가 알던 발음 기호(IPA, International Phonetic Alphabet)가 아니라 다른 기호를 쓰고 있기에 우선 기호에 익숙해질 필요가 있어 보인다. ( Guide to Pronunciation  참조) 영영사전 속 오디오와 발음기호를 이용하여 공부해보고 그래도 애매한 것은 Youglish.com에서 실제 발음을 검색하며 공부하려고 한다. 아래 리스트는 내가 정리한 단어 목록인데 나 외에 여러 한국인들이 잘못 알고 발음을 틀리기 쉬운 단어들이 꽤 포함되어 있을 것이라 생각해서 공유해본다. (2020. 4. 21. 업데이트) 단어 / Pronunciation symbols (Merriam-Webster dictionary) 비교하며 볼 단어 cafe ( café ) / ka-ˈfā / 카페 아니고 캐페이 latte / ˈlä-(ˌ)tā / 라테이 frappe / fra-ˈpā / 프래페이 position / pə-ˈzi-shən / 포지션 아니고 퍼지션 solution / sə-ˈlü-shən / 솔루션 아니고 설루션 report / ri-ˈpȯrt...